skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Xubo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marginalization of latent variables or nuisance parameters is a fundamental aspect of Bayesian inference and uncertainty quantification. In this work, we focus on scalable marginalization of latent variables in modeling correlated data, such as spatio-temporal or functional observations. We first introduce Gaussian processes (GPs) for modeling correlated data and highlight the computational challenge, where the computational complexity increases cubically fast along with the number of observations. We then review the connection between the state space model and GPs with Matérn covariance for temporal inputs. The Kalman filter and Rauch-Tung-Striebel smoother were introduced as a scalable marginalization technique for computing the likelihood and making predictions of GPs without approximation. We introduce recent efforts on extending the scalable marginalization idea to the linear model of coregionalization for multivariate correlated output and spatio-temporal observations. In the final part of this work, we introduce a novel marginalization technique to estimate interaction kernels and forecast particle trajectories. The computational progress lies in the sparse representation of the inverse covariance matrix of the latent variables, then applying conjugate gradient for improving predictive accuracy with large data sets. The computational advances achieved in this work outline a wide range of applications in molecular dynamic simulation, cellular migration, and agent-based models. 
    more » « less